InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts

نویسندگان

  • Y. C. Lin
  • C. W. Kuo
چکیده

The optical and electrical properties of indium tin oxide (ITO)(60 nm), Ni(3.5 nm)/ITO(60 nm) and Ni(5 nm)/Au(5 nm) films were studied. It was found that the normalized transmittance of ITO and Ni/ITO films could reach 98.2% and 86.6% at 470 nm, which was much larger than that of the Ni/Au film. It was also found that both Ni/ITO and Ni/Au could form good ohmic contact on top of p-GaN. In contrast, ITO on p-GaN was electrically poor and non-ohmic. Nitride-based light-emitting diodes (LEDs) with these three p-contact layers were also fabricated. It was found that the LED forward voltage was 3.65, 3.26 and 3.24 V for the LEDs with ITO, Ni/ITO and Ni/Au p-contact layer, respectively. With a 20 mA current injection, it was also found that measured output power was 7.50, 6.59 and 5.26 mW for the LEDs with ITO, Ni/ITO and Ni/Au p-contact layer, respectively. Although the LED with ITO p-contact could provide the largest output intensity, its lifetime was the shortest due to severe heating effect. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of an oxidized NiÕAu p contact on the performance of GaNÕInGaN multiple quantum well light-emitting diodes

Feasibility of an oxidized Ni/Au p contact on some aspects of device applications for a GaN/InGaN multiple quantum well light-emitting diode ~LED! was investigated. For the oxidation of Ni/Au p contact, furnace annealing of a completely fabricated LED was performed at 600 °C for 5 min in an O2 ambient. For the case of LED with an oxidized Ni/Au system, the I – V measurements showed a reduction ...

متن کامل

Impact of Plasma Electron Flux on Plasma Damage‐Free Sputtering of Ultrathin Tin‐Doped Indium Oxide Contact Layer on p‐GaN for InGaN/GaN Light‐Emitting Diodes

The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changi...

متن کامل

Ohmic contacts to N-face p-GaN using Ni/Au for the fabrication of polarization inverted light-emitting diodes.

The electrical properties of Ni-based ohmic contacts to N-face p-type GaN were investigated. The specific contact resistance of N-face p-GaN exhibits a linear decrease from 1.01 omega cm2 to 9.05 x 10(-3) omega cm2 for the as-deposited and the annealed Ni/Au contacts, respectively, with increasing annealing temperature. However, the specific contact resistance could be decreased down to 1.03 x ...

متن کامل

Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes.

This paper presents a novel and mass-producible technique to fabricate indium-tin-oxide (ITO) nanorods which serve as an omnidirectional transparent conductive layer (TCL) for InGaN/GaN light emitting diodes (LEDs). The characteristic nanorods, prepared by oblique electron-beam evaporation in a nitrogen ambient, demonstrate high optical transmittance (T>90%) for the wavelength range of 450nm to...

متن کامل

Turn-on voltage reduction of organic light-emitting diode using a nickel-doped indium tin oxide anode prepared by single target sputtering

Organic light-emitting diodes (OLEDs) with a nickel (Ni)-doped indium tin oxide (ITO) anode were fabricated. The Ni-doped ITO anode was prepared using sputter deposition of Ni–ITO single targets consisting of 1, 3 and 5 wt% of nickel. Turn-on voltage of OLED devices with the Ni-doped ITO anode was reduced by 2.5, 4 and 3.8 V for 1, 3 and 5 wt% targets, respectively. Half-luminance lifetime was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003